Atmospheric nitrous oxide during the last 140,000 years

Adrian Schilt a,b,⁎, Matthias Baumgartner a,b, Jakob Schwander a,b, Daphné Buiron c, Emilie Capron d, Jérôme Chappellaz c, Laetitia Loulergue c, Simon Schüpbach a,b, Renato Spahni a,b, Hubertus Fischer a,b, Thomas F. Stocker a,b

⁎ corresponding author. Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland. Tel.: +41 31 631 44 76; fax: +41 31 631 87 42.

E-mail address: schilt@climate.unibe.ch (A. Schilt).

A R T I C L E I N F O

Article history:
Received 7 May 2010
Received in revised form 10 September 2010
Accepted 21 September 2010
Available online 20 October 2010

Editor: P. DeMenocal

Keywords:
greenhouse gas
radiative forcing
carbon dioxide
methane
nitrous oxide
paleo

A B S T R A C T

Reconstructions of past atmospheric concentrations of greenhouse gases provide unique insight into the biogeochemical cycles and the past radiative forcing in the Earth’s climate system. We present new measurements of atmospheric nitrous oxide along the ice cores of the North Greenland Ice Core Project and Talos Dome sites. Using records of several other ice cores, we are now able to establish the first complete composite nitrous oxide record reaching back to the beginning of the previous interglacial about 140,000 yr ago. On the basis of such composite ice core records, we further calculate the radiative forcing of the three most important greenhouse gases carbon dioxide, methane and nitrous oxide during more than a full glacial–interglacial cycle. Nitrous oxide varies in line with climate, reaching very low concentrations of about 200 parts per billion by volume during Marine Isotope Stages 4 and 2, and showing substantial responses to millennial time scale climate variations during the last glacial. A large part of these millennial time scale variations can be explained by parallel changes in the sources of methane and nitrous oxide. However, as revealed by high-resolution measurements covering the Dansgaard/Oeschger events 17 to 15, the evolution of these two greenhouse gases may be decoupled on the centennial time scale. Carbon dioxide and methane concentrations do not reach interglacial levels in the course of millennial time scale climate variations during the last glacial. In contrast, nitrous oxide often reaches interglacial concentrations in response to both, glacial terminations and Dansgaard/Oeschger events. This indicates, from a biogeochemical point of view, similar drivers in both temporal cases. While carbon dioxide and methane concentrations are more strongly controlled by climate changes in high latitudes, nitrous oxide emissions changes may mainly stem from the ocean and/or from soils located at low latitudes. Accordingly, we speculate that high latitudes could play the leading role to trigger glacial terminations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Anthropogenic emissions of nitrous oxide (N₂O) led to an ongoing increase of this important greenhouse gas from a preindustrial value of about 270 parts per billion by volume (ppbv) to a present-day (2008) concentration of 322 ppbv (Flückiger et al., 1999; Machida et al., 1995; WMO, 2009). N₂O is naturally produced by nitrification and denitrification in terrestrial soils (about two thirds of total N₂O emissions) and in the ocean (about one third of total N₂O emissions) (Bouwman et al., 1993; Kroeze et al., 1999; Nevison et al., 1995). The main sink of N₂O is photodissociation in the stratosphere, followed by chemical reactions with excited oxygen (Minschwaner et al., 1998).

Compared to the mixing time of the atmosphere, N₂O has a relatively long atmospheric lifetime of about 120 yr (Minschwaner et al., 1998; Volk et al., 1997), and accordingly shows no significant interhemispheric concentration gradient.

Thanks to the analysis of air enclosed in ice cores from polar ice sheets, paleo-atmospheric concentration records of the greenhouse gases carbon dioxide (CO₂) and methane (CH₄) are available for the entire last 800,000 yr (800 kyr) (Loulergue et al., 2008 and references therein; Lüthi et al., 2008 and references therein). For this time interval, past natural variations of N₂O have been reconstructed for all interglacials and parts of glacial (Flückiger et al., 2002; Schilt et al., 2010; Sowers et al., 2003; Sparhawk et al., 2005). In addition, there exist N₂O records covering selected Dansgaard/Oeschger (DO) events (Flückiger et al., 1999, 2004). DO events are millennial time scale climate variations during the last glacial as recorded in Greenland ice cores (e.g. Dansgaard et al., 1984; NGRIP Members, 2004) with counterparts visible over a wide spread of latitudes (e.g. Bond et al., 2001).
However, N2O records have remained fragmentary due to the occurrence of in situ artefacts (Section 3), which has so far precluded to reconstruct the evolution of the N2O concentration in the course of a full glacial–interglacial cycle. New measurements along the ice cores of the Talos Dome (TD, Antarctica, 72°47′ S, 159°04′ E) and North Greenland Ice Core Project (NGRIP, Greenland, 75°06′ N, 42°20′ W) sites now fill existing gaps in the N2O records of the last 140 kyr.

Fig. 1. Greenhouse gas records covering the last 140 kyr on the EDC3 time scale (Loulergue et al., 2007). (A) Synchronised CH4 records of EDC (Flückiger et al., 2002; Monnin et al., 2001; Sphahni et al., 2005), EDML (Capron et al., 2010; EPICA Community Members, 2006; and new data), NGRIP (Flückiger et al., 2004; Huber et al., 2006; and new data), Byrd (Blunier et al., 1998), TD (Buiron et al., 2010; Stenni et al., submitted for publication), GRIP (Blunier et al., 1998; Chappellaz et al., 1993, 1997; Dällenbach et al., 2000; Flückiger et al., 2004), GISP2 (Brook et al., 1996, 2000) and Vostok (Petit et al., 1999). The grey triangles on top of the CH4 records indicate the locations of the tie points used for the CH4 synchronisation (see Appendix A.4). Numbers denote DO events. (B) CO2 records from EDC (Minnin et al., 2001, 2004), Byrd (Ahn and Brook, 2007, 2008), Taylor Dome (Indermühle et al., 2000) and Vostok (Pepin et al., 2001; Petit et al., 1999). (C) N2O records from EDC (Flückiger et al., 2002; Sphahni et al., 2005; Stauffer et al., 2000), EDML (Schilt et al., 2010), NGRIP (Flückiger et al., 2004; and new data), TD (new data), GRIP (Flückiger et al., 1999) and GISP2 (Sowers et al., 2003). (D) CH4 smoothing spline, cutoff period of 1000 yr (Enting, 1987), only EDC CH4 data used. (E) CO2 smoothing spline, cutoff period of 1000 yr (Enting, 1987), all data used. (F) N2O smoothing spline, cutoff period of 1000 yr (Enting, 1987), all data used. (G) Radiative forcing (relative to the year 1750) of CH4 (blue), CO2 (green), N2O (red) and all three greenhouse gases together (black) calculated according to Ramaswamy et al. (2001). The legend at the lower right corner indicates the colour code for the ice core measurements.
2. Data records

We present 287 N_2O measurements performed along the TD ice core reaching back to about 140 kyr before present (140 kyr BP) covering Termination 2, Marine Isotope Stage (MIS) 5.5, the last glacial, Termination 1 and the Holocene (Fig. 1). On the TALDICE1 time scale (Buiron et al., 2010), the mean time resolution is about 1150 yr between 140 and 40 kyr BP, and better than 200 yr for the last 40 kyr. In addition, we present 164 N_2O measurements performed along the NGRIP ice core covering the DO events 17 to 15 from 63 to 55 kyr BP and parts of Termination 1 (Figs. 1 and 2). These new NGRIP measurements provide a mean time resolution of 72 yr on the GRIP2001/SS09sea age scale (Huber et al., 2006; Johnsen et al., 2001; NGRIP Members, 2004).

For synchronisation purposes we also use new CH4 data (Fig. 1). First, 31 new CH4 measurements cover for the first time parts of Termination 1 along the NGRIP ice core (same samples as for N_2O measurements). Second, we use 197 new CH4 measurements performed along the ice core of the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML, Antarctica, 75°00′ S, 00°04′ E) site. These measurements complete the EDML CH4 record (Capron et al., 2010; EPICA Community Members, 2006) back to 140 kyr BP with a mean time resolution of better than 200 yr on the EDML1 time scale (Loulergue et al., 2007; Ruth et al., 2007).

We further use a new TD dust record reaching back to 140 kyr BP, with some gaps during the Holocene and the last glacial (Figs. 3 and 4). For the TD N_2O measurements the standard deviation (1σ) is 5.6 ppbv as discussed in Appendix A.1. The standard deviation of our CH4 measurements is 10 ppbv (Chappellaz et al., 1997). See Appendices A.1 and A.3 for details about the measurement techniques for N_2O, CH4 and dust. Appendix A.2 describes the offset corrections applied to parts of the N_2O and CH4 measurements.

3. N_2O artefacts

N_2O records reconstructed from polar ice cores occasionally show elevated values exceeding atmospheric concentrations (e.g. Flückiger et al., 2004; Schilt et al., 2010; Sowers, 2001; Spahni et al., 2005). These N_2O artefacts originate from in situ production of N_2O in the ice, likely due to microbial activity (Miteva et al., 2007; Rohde et al., 2008).

In order to detect measurements affected by artefacts in the NGRIP N_2O record we use the artefact detection algorithm already applied to earlier NGRIP N_2O records (Flückiger et al., 2004). This algorithm is only suitable for high-resolution records, and it iteratively excludes values which deviate more than 8 ppbv from a smoothing spline with a cutoff period of 600 yr (Enting, 1987) calculated through the data. This algorithm is designed to empirically identify values outside the analytical precision that cannot be explained by atmospheric N_2O variability taking into account the long lifetime of N_2O.

Along the EDML and EPICA Dome C (EDC, Antarctica, 75°06′ S, 123°21′ E) ice cores, N_2O measurements performed on ice samples with dust concentrations above an empirical threshold of 300 parts per billion by weight (ppbw) have been defined as affected by artefacts, because nearby measurements on such samples showed unusually high N_2O concentrations and large scatter (Schilt et al., 2010; Spahni et al., 2005). Note that this does not imply that in situ production of N_2O in the ice is directly related to the dust concentration itself. Rather, the responsible impurities and/or bacterial cells may reach the EDML and EDC sites by the same pathway as the dust particles.

Along the TD ice core, dust concentrations are almost always below this empirical threshold as applied to the EDML and EDC ice cores. The only exception to that are short intervals found in ice of MIS 2, where dust concentrations are above 300 ppbw (Fig. 3). Nevertheless, during these intervals, the TD N_2O record generally shows substantially lower values and lower scatter than the EDML and EDC N_2O records corresponding to the same age (Fig. 4). Looking at ice cores from Greenland, artefacts do not show a correlation with impurities such as e.g. dust and calcium. Instead, they preferentially occur in depth intervals with fast changing concentrations of impurities mainly located at the boundaries of DO events (Flückiger et al., 2004). Given the fact that concentrations of impurities along the TD ice core are

![Graph showing $\delta^{18}O_{\text{ice}}$, CH4, and N_2O during the DO events 17 to 15. (A) NGRIP $\delta^{18}O_{\text{ice}}$, a qualitative proxy for Greenland temperature variations (NGRIP Members, 2004). As investigated on the basis of $\delta^{15}N$ measurements on atmospheric nitrogen, Greenland temperature shows very fast increases of 12, 9 and 10 °C at the beginning of the DO events 17, 16 and 15, respectively (Huber et al., 2006). (B) NGRIP CH4 characterized by nearly in phase increases with $\delta^{15}O_{\text{ice}}$ (Huber et al., 2006). (C) NGRIP N2O (new data). Measurements affected by artefacts (stars, values exceeding the y-axis are indicated by arrows) are excluded by the use of the artefact detection algorithm described in Flückiger et al. (2004). The dashed line shows a smoothing spline with a cutoff period of 600 yr (Enting, 1987). All data are plotted on the GRIP2001/SS09sea age scale (Huber et al., 2006; Johnsen et al., 2001; NGRIP Members, 2004).]
orders of magnitude lower and do not show large and rapid changes at the boundaries of DO events, it appears to be rather unlikely that a similar relationship between impurities and N\textsubscript{2}O artefacts as observed along ice cores from Greenland holds also true for this Antarctic ice core. In view of these results, we suggest that the TD ice core reveals a N\textsubscript{2}O record of atmospheric origin over its full length (including the late last glacial), regardless of the fact that dust concentrations sometimes exceed the empirical threshold of 300 ppbw as applied to the EDML and EDC ice cores. However, we cannot strictly exclude a partial contamination of the TD N\textsubscript{2}O record during any time interval. In particular, the TD N\textsubscript{2}O record during MIS 2 may serve only as an upper concentration limit until verified by N\textsubscript{2}O records from other ice cores (note that no indications exist for artefacts leading to values below the atmospheric concentration). Further, the TD N\textsubscript{2}O record may be

![Fig. 3. TD dust and N\textsubscript{2}O on their respective depth scale. (A) Solid line: TD dust concentration (smoothing spline with cutoff period of 2000 yr according to Enting (1987), new data). Dashed line: concentration threshold of 300 ppbw as applied to the EDML and EDC ice cores. Grey shaded areas: depth intervals with a dust concentration exceeding the threshold of 300 ppbw. (B) Black: TD N\textsubscript{2}O (new data). Red: mean and standard deviation of five adjacent samples for each depth level (see Appendix A.1). Blue crosses show the single measurements and red italic numbers indicate the standard deviations in ppbv. The number in brackets is the standard deviation calculated without taking into account the highest measurement out of the five adjacent samples for this depth. The top x-axis indicates the TALDICE1 gas age (Buijon et al., 2010).](image)

![Fig. 4. Comparison of dust and N\textsubscript{2}O from the EDC, EDML and TD ice cores. (A) Dust records of EDC (Lambert et al., 2008), EDML (EPICA Community Members, 2006) and TD (new data). Shown are smoothing splines with a cutoff period of 2000 yr (Enting, 1987). The dashed line shows the concentration threshold of 300 ppbw as applied to the EDML and EDC ice cores. (B) N\textsubscript{2}O records of EDML (Schilt et al., 2010), EDC (Flückiger et al., 2002; Spahni et al., 2005; Stauffer et al., 2002) and TD (new data). Crosses mark EDC and EDML measurements defined as affected by artefacts, measurements marked with diamonds are thought to represent atmospheric concentrations. Asterisks mark events in the TD N\textsubscript{2}O record which do not have a counterpart in CH\textsubscript{4}. Note that between 26 and 16 kyr BP, CH\textsubscript{4} only shows very small variations in response to DO event 2 (Fig. 1). Dust and N\textsubscript{2}O records are shown on the (CH\textsubscript{4} synchronised) EDC3 gas age scale (Loulergue et al., 2007), wherefor dust and gas measurements from each ice core plotted at the same age stem from the same depth. During time intervals with TD dust concentrations above the threshold of 300 ppbw, the mean N\textsubscript{2}O concentrations of EDC, EDML and TD are 229.1, 246.3 and 203.3 ppbv, respectively. The standard deviations during these time intervals are 16.5, 18.0 and 10.0 ppbv, respectively. Note that the TD N\textsubscript{2}O measurements at the end of MIS 2 and during Termination 1 are in good agreement with the measurements performed along the NGRIP ice core (grey line in the background).](image)
questionable for some of the fast variations found during MIS 3 and 2, since some of these variations do not have a counterpart in CH₄ and, thus, do not correspond to a DO event (see asterisks in Fig. 4). Higher time resolution and verification with N₂O records from other ice cores will help to draw final conclusions regarding these fast N₂O variations during MIS 3 and 2.

Overall, we observe a satisfactory agreement between TD and other atmospheric N₂O records during overlapping time intervals during the last 140 kyr (Figs. 1, 4, and 7 and Appendix A.2), increasing our confidence in the atmospheric origin of the TD N₂O record.

4. Results

4.1. Glacial N₂O variations

The new NGRIP and TD measurements reproduce the evolution of atmospheric N₂O during Termination 1 and the Holocene as revealed by earlier studies (Flückiger et al., 1999, 2002; Schilt et al., 2010; Sowers et al., 2003), and fill gaps in the existing N₂O records of the last glacial (Fig. 1). In particular, the TD measurements allow for a reconstruction of the atmospheric N₂O concentration during MIS 2 including the Last Glacial Maximum (LGM), where we observe a concentration of 202 ± 6 ppbv (mean and standard deviation from 25 to 15 kyr BP). The records confirm the glacial–interglacial concentration increase from about 200 ppbv during the LGM to about 270 ppbv during the early Holocene (Flückiger et al., 1999).

Further, the TD N₂O record reveals large variations in response to the DO events of the last glacial. The amplitudes of CH₄ variations decrease approximately linearly from the DO events 8 to 2. This trend is probably caused by (i) reduced summer insolation in the tropical and mid-northern latitudes (Brook et al., 1996; Flückiger et al., 2004), (ii) spreading ice sheets increasingly covering boreal source regions, and (iii) decreasing temperature amplitudes in the high northern latitudes for the DO events 8 to 2. The last hypothesis is not supported by measurements of the oxygen isotopic composition of precipitation (δ¹⁸Oice, a qualitative proxy for temperature variations) along Greenland ice cores, since such measurements do not show decreasing amplitudes for the DO events 8 to 2 (NGRIP Members, 2004). However, the real temperature changes could differ from the δ¹⁸Oice temperature proxy, e.g. due to changing origin or seasonality of precipitation (Masson-Delmotte et al., 2005). Further, the temperature changes over Greenland may not completely be representative for the temperature changes in most of the northern hemisphere, and Greenland ice cores may primarily record wintertime temperature changes (Denton et al., 2005), which are less important for the emissions of greenhouse gases. All these hypotheses suppose that CH₄ emissions (from wetlands) located at high northern latitudes are of primary importance for CH₄ variations in response to DO events, which is supported by studies of the interpolar gradient and hydrogen isotopic composition of CH₄ (Bock et al., 2010; Dällenbach et al., 2000). Since the N₂O response to the DO events 8 to 2 does not show a decrease in amplitudes like CH₄, we suggest that the observed N₂O variations are driven by marine and/or terrestrial emissions from low latitudes (Schilt et al., 2010; Schmittner and Galbraith, 2008).

Indeed, reconstructions of the isotopic composition of atmospheric oxygen point to large changes in the hydrological cycle and, thus, in the photosynthetic capacity of the terrestrial surface in concert with the DO events during the last glacial (Landais et al., 2007; Severinghaus et al., 2009). These changes are mainly located at low latitudes and they may affect the N₂O emissions from soils. On the other hand, reconstructions of denitrification rates in the Arabian Sea and in the Eastern Tropical North Pacific also show strong reactions to DO events (Emmer and Thunell, 2000; Suthloff et al., 2001). These two important lower latitude regions for marine N₂O emissions alone could be responsible for substantial changes in the atmospheric N₂O concentration.

4.2. N₂O during the DO events 17 to 15

Figure 2 presents the high-resolution NGRIP N₂O record covering the DO events 17 to 15, along with the NGRIP CH₄ record (Huber et al., 2006) and the NGRIP δ¹⁸Oice record (NGRIP Members, 2004). As noted for other DO events (Flückiger et al., 2004), the new NGRIP N₂O record generally follows Greenland temperature and CH₄, reaching concentrations of about 260 to 275 ppbv during interstadials. However, N₂O differs from Greenland temperature and CH₄ in its temporal evolution. In the long-lasting stadial preceding DO event 17, the slow N₂O increase (which occurs in concert with increasing δ¹⁸Oice but constant CH₄) starts from around 200 ppbv. In the course of the last glacial-interglacial cycle, such low N₂O concentrations have otherwise only been reconstructed for MIS 2 (Fig. 1). Several hundred years before the rapid increase of δ¹⁸Oice and CH₄ corresponding to the onset of DO event 17, the increase rate of N₂O changes from ~0.8 ppbv/century to ~4.1 ppbv/century. This increase rate of ~4.1 ppbv/century is still about 10 times slower than the anthropogenic increase rate of the last 50 yr (Khall et al., 2002). The early increase of N₂O compared to δ¹⁸Oice and CH₄ points to changes in the biogeochemical cycles related to N₂O occurring hundreds of years before the rapid temperature increase in Greenland. Note, however, that Bock et al. (2010) also observe a change in the hydrogen isotopic composition of CH₄ (without considerably affecting the CH₄ concentration) about 500 yr before DO event 8, pointing to changes of boreal wetlands before the rapid temperature increase in Greenland. An early increase of N₂O has also been reproduced for other long-lasting DO events (e.g. 20, 19, 12 and 8), while shorter DO events (e.g. 11 and 10) show a rather synchronous increase of CH₄ and N₂O (Flückiger et al., 2004). It has been shown that a substantial Antarctic warming precedes each DO event observed in Greenland (EPICA Community Members, 2006). However, a causal relationship between this early warming in the south and the early increase of N₂O can be excluded because of the different timing (Flückiger et al., 2004). Recent model simulations of Schmittner and Galbraith (2008) rather suggest that long-term adjustment of the nitrate and oxygen content in the thermocline after the collapse of the Atlantic Meridional Overturning Circulation (AMOC) could be responsible for the early increase of N₂O.

The maximum N₂O concentration during DO event 17 is on the order of the preindustrial Holocene value (Flückiger et al., 1999). As for other DO events, N₂O reaches the maximum several hundred years later than δ¹⁸Oice and CH₄. This lag is likely caused by the relatively long lifetime of N₂O, and does not necessarily mean that N₂O emissions continued to increase while CH₄ emissions already reached a stable level (Flückiger et al., 2004).

In the course of the DO events 17 and 16, the Greenland δ¹⁸Oice record is characterized by fast centennial time scale temperature variations between stadials and interstadials. While CH₄ clearly responds to every single variation in the δ¹⁸Oice record within a few decades (Huber et al., 2006), N₂O remains on a typical interstadial level even when δ¹⁸Oice and CH₄ drop to stadial levels (Fig. 2). The question is whether the longer atmospheric lifetime of N₂O compared to the atmospheric lifetime of CH₄ can lead to the observed differences between the two greenhouse gas records. To address this question, we calculate the CH₄ emissions required to explain the reconstructed CH₄ concentration under the assumption of a constant lifetime which is set to 10 yr (Chappellaz et al., 1997; Martinerie et al., 1995). Due to this relatively short lifetime, CH₄ emissions and CH₄ concentration change nearly in parallel. Assuming that N₂O emissions are proportional to the CH₄ emissions, the corresponding hypothetical N₂O emissions and the deduced hypothetical N₂O concentration can be calculated, whereby the lifetime of N₂O is set to 120 yr (Minschwaner et al., 1998; Volk et al., 1997). The hypothetical N₂O concentration follows, although in a smoothed way, the rapid changes in δ¹⁸Oice and CH₄, and thus contradicts the NGRIP N₂O record which does not respond to the changes in δ¹⁸Oice and CH₄ (Fig. 5). Hence, the relatively long lifetime
emissions from these regions contribute, if at all, weakly to the concentration. The assumption of parallel variations in the emissions concentration (dashed line) calculated from the hypothetical N$_2$O source. The low latitudes (Schilt et al., 2010; Schmittner and Galbraith, 2008).

of CO$_2$, CH$_4$ and N$_2$O from numerous ice cores (including new and gases on a common time scale, we assemble and synchronise records in order to provide records of the three most important greenhouse gases on a common time scale, we assemble and synchronise records indispensable for modelling studies of the Earth's climate system. In

5. Discussion

5.1. Radiative forcing during the last 140 kyr

Detailed knowledge of the past atmospheric greenhouse gas concentrations and thus the radiative forcing of the atmosphere is indispensable for modelling studies of the Earth's climate system. In order to provide records of the three most important greenhouse gases on a common time scale, we assemble and synchronise records of CO$_2$, CH$_4$ and N$_2$O from numerous ice cores (including new and published data), and calculate the radiative forcing (Fig. 1).

First, we present a composite CO$_2$ record (smoothing spline with a cut off period of 1000 yr calculated according to Enting (1987)) covering the last 140 kyr and consisting of earlier published records from the EDC, Taylor Dome (Antarctica, 77°48′ S, 158°43′ E), Byrd (Antarctica, 80°01′ S, 119°31′ W) and Vostok (Antarctica, 78°28′ S, 106°50′ E) ice cores. Second, we calculate a smoothing spline with a cutoff period of 1000 yr (Enting, 1987) through the EDC CH$_4$ record. We do not use a composite record for CH$_4$ since doing so would add uncertainties rather than new information. Note that the CH$_4$ smoothing spline represents a southern hemisphere signal, while the interpolor gradient of CH$_4$ has been found to reach values of up to about 50 ppbv (Chappellaz et al., 1997; Dallenbach et al., 2000). Third, we establish a composite N$_2$O record consisting of measurements obtained from the EDC, EDCM, TD and NGRIP ice cores, as well as from the ice cores of the Greenland Ice Core Project (GRIP, Greenland, 72°34′ N, 37°38′ W) and the Greenland Ice Sheet Project 2 (GISP2, Greenland, 72°36′ N, 38°30′ W) sites. The composite N$_2$O record (smoothing spline with a cut off period of 1000 yr calculated according to Enting (1987)) now covers the last 140 kyr without gaps, owing to the new measurements along the TD ice core. In order to put CO$_2$, CH$_4$ and N$_2$O records from different ice cores on the EDC3 time scale (Loulergue et al., 2007), we perform a CH$_4$ synchronisation (Appendix A.4).

The records enable a comprehensive insight into the radiative forcing of CO$_2$, CH$_4$ and N$_2$O during the last 140 kyr. The radiative forcing as shown in Figure 1 is calculated according to Ramaswamy et al. (2001) relative to the year 1750 (preindustrial forcing). As already noted in previous work (e.g. Chappellaz et al., 1990; Leuenberger and Siegenthaler, 1992), CH$_4$ and N$_2$O contribute approximately equally to the (natural) global radiative forcing during the last 140 kyr; but their contribution is of secondary importance compared to the radiative forcing of CO$_2$ (CH$_4$ and N$_2$O together contribute about 20% to the total change in the radiative forcing of all greenhouse gases over Termination 1). The provided smoothing splines through the CO$_2$, CH$_4$ and N$_2$O composite records allow for an insight into long-term evolutions of the paleo-atmospheric greenhouse gas concentrations, however, there are limitations to study detailed responses on centennial to millennial time scales. For this we would rather suggest to rely on high-resolution greenhouse gas measurements from one single ice core.

5.2. Comparison of millennial time scale climate variations and glacial terminations

Investigation of natural mechanisms causing the Earth’s climate system to shift between cooler and warmer climate states could provide crucial information to improve projections of the climate in the future. For past natural climate variations on glacial–interglacial time scales, the strong imprint of insolation, which becomes apparent when looking at frequency spectra of climate records and insolation (Hays et al., 1976), shows that external forcing plays an important role or may act as a trigger. While it is clear that external forcing can, however, not quantitatively explain the global changes in the radiative forcing necessary for glacial–interglacial transitions, the interaction of insolation with climate drivers on Earth (such as atmosphere, cryosphere, land, and ocean) leading to a sufficient internal amplification is still not completely understood. As demonstrated by the calculation of the radiative forcing (Section 5.1), CO$_2$ strongly feeds back on global climate, while CH$_4$ and N$_2$O contribute less to the total radiative forcing of greenhouse gases on glacial–interglacial and millennial time scales. Therefore, rather than considering CH$_4$ and N$_2$O as first-order climate drivers, we here understand their atmospheric concentrations as globally integrated indicators of changes in the biogeochemical cycles. Thereby, variations in CH$_4$ are thought to mainly indicate changes in boreal and tropical wetland emissions, and thus changes in precipitation patterns, temperature, sea level and ice sheet extent (e.g. Berrittella and van Huissteden, 2009; Brook et al., 2000; Bubier and Moore, 1994). Variations in N$_2$O are thought to be caused by changes in
marine and/or terrestrial emissions from low latitudes (e.g. Schilt et al., 2010; Schmittner and Galbraith, 2008). While some studies suggest quite stable atmospheric sinks for CH4 and N2O over time (Crutzen and Bruhl, 1993; Martinerie et al., 1995), other investigations indicate that variations in the sinks of the two greenhouse gases could still have the potential to strongly influence the atmospheric budgets (e.g. Fischer et al., 2008; Kaplan et al., 2006).

During the last glacial, records from Antarctic ice cores reveal numerous temperature variations on a millennial time scale. Such Antarctic Isotope Maxima (AIM) events (EPICA Community Members, 2006) correspond to a slow and steady warming around Antarctica followed by a similar cooling, the latter being initiated by a fast increase in the temperature recorded in Greenland ice cores, i.e. a DO event (EPICA Community Members, 2006). This interplay of southern and northern temperatures may be driven by changes in the AMOC and is known as the bipolar seesaw (Broecker, 1998; Stocker, 1998; Stocker and Johnsen, 2003). Wolff et al. (2009) have looked at a proxy for Antarctic temperature variations and have found that initial phases of AIM events and glacial terminations are indistinguishable regarding their temperature evolution. According to Wolff et al. (2009), both, AIM events and glacial terminations, are led by a warming in the southern hemisphere. In case of glacial terminations no northern control sets in, allowing southern warming (and warming in the southern hemisphere. In case of glacial terminations for Antarctic temperature variations and have found that initial phases of AIM events and Termination 1 can also be found in Liu et al. (2010).

To an interglacial. A detailed comparison of the transition from MIS 4 to 3 and Termination 1 is given in Liu et al. (2010). Both x-axes span 9 kyr.

GRIP2001/SS09 sea time scale (Huber et al., 2006; Johnsen et al., 2001; NGRIP Members, 2003). Wolff et al. (2009) have looked at a proxy for Antarctic temperature variations and have found that initial phases of AIM events and glacial terminations are indistinguishable regarding their temperature evolution. According to Wolff et al. (2009), both, AIM events and glacial terminations, are led by a warming in the southern hemisphere. In case of glacial terminations no northern control sets in, allowing southern warming (and associated atmospheric CO2) to increase beyond a point of no return that pushes climate into an interglacial state. In turn, during AIM events, the AMOC strengthens which leads to a cooling in the southern hemisphere and an accompanying decline in atmospheric CO2, finally resulting in a stadial climate.

Here, we look at greenhouse gas concentrations and add a biogeochemical point of view to this discussion. Comparing the greenhouse gas concentrations during the last 140 kyr as recorded in response to DO/AIM events and glacial terminations, we observe that maximum CH4 and CO2 concentrations during DO/AIM events never reach values as high as at the end of Termination 1 and Termination 2. (Fig. 1). In contrast, high interglacial N2O concentrations are very common also during DO events. In order to highlight one particular case of similarities in N2O responses to DO events and glacial terminations, we compare the evolution of N2O during the DO events 17 to 15 and Termination 1 (Fig. 6). The former time interval corresponds to the transition from MIS 4 to 3 (Section 4.2), and thus to one of the strongest climate changes during the last glacial not leading to an interglacial. A detailed comparison of the transition from MIS 4 to 3 and Termination 1 can also be found in Liu et al. (2010). Remarkably, the N2O records of the two selected time intervals evolve virtually identically until 3000 yr after the beginning of the N2O rise, when N2O concentrations decrease at the end of DO event 16 on the one hand or increase into the Preboreal on the other hand.

Such similarities as for the evolution of N2O in response to the transition from MIS 4 to 3 and Termination 1 are not apparent for CH4 and CO2. The baseline values prior to the two transitions differ by about 50 ppbv for CH4 and by about 20 ppmv for CO2. Further, as for DO/AIM events in general, CH4 and CO2 concentrations do not reach interglacial levels during the transition from MIS 4 to 3, in contrast to N2O concentrations. From the point of view of N2O the DO events 17 to 15 could be classified as “interglacial”. Our observations suggest that the mechanisms leading to DO/AIM events and glacial terminations could have the same influence on the sources (and sinks) of N2O, while the responses of CH4 and CO2 clearly differ for the two types of transitions. Since we think that N2O is strongly influenced by the ocean and soils located at low latitudes, while CH4 and CO2 may also be driven by changes occurring at high latitudes of both hemispheres (in addition to important contributions from the tropics), we finally speculate that processes located at high latitudes are a determining factor on whether an ongoing transition leads to an interglacial or not.

6. Conclusions

New measurements along the TD ice core provide for the first time an entire atmospheric N2O record during MIS 2, including the LGM which is characterized by a mean N2O concentration of 202 ± 8 ppbv. The TD N2O record shows large variations in response to the DO events 8 to 2, while CH4 amplitudes during these DO events decrease towards the LGM. We therefore suggest that N2O emissions are not regulated by the very same parameters responsible for the amplitude modulation of CH4 changes in response to DO events. This could point to a predominance of marine and/or terrestrial N2O emissions from low latitudes (Schilt et al., 2010; Schmittner and Galbraith, 2008). In view of the large N2O variations in response to the DO events around the end of the last glacial, N2O could become a tool for synchronising ice cores during this crucial time interval where only minor changes in CH4 occur. However, N2O measurements affected by artefacts could complicate the picture.

High-resolution N2O measurements along the NGRIP ice core covering the DO events 17 to 15 confirm that N2O starts to increase hundreds of years before the rapid increase in Greenland temperature and CH4 at the beginning of long-lasting DO events (Flückiger et al., 2004). While a large part of the CH4 and N2O responses to millennial time scale variations during the last glacial can be explained by parallel changes in the sources of the two greenhouse gases, our data show that CH4 and N2O emissions evolved independently in the course of centennial time scale variations during the DO events 17 and 16. A composite N2O record gives for the first time a complete overview of the evolution of atmospheric N2O back to the beginning of the previous interglacial. By the additional use of numerous CH4 and CO2 ice core records put on a common time scale, we calculate the radiative forcing of these three most important long-living greenhouse gases for the last 140 kyr. Although the provided smoothing splines do not resolve very detailed variations on centennial to millennial time scales, they may be useful for future modelling studies focussing on glacial–interglacial time scales.

The comparison of large climate transitions has revealed that Antarctic temperature evolves similarly during initial phases of DO/AIM events and glacial terminations (Wolff et al., 2009). Because we find that (during the last 140 kyr) N2O concentrations during DO events often reach levels similar to those at the end of glacial terminations, while CH4 and CO2 respond differently to the two types of transitions, we suggest that DO/AIM events and glacial terminations may have a similar influence on N2O sources (and sinks). Since N2O concentrations may mainly reflect changes in marine and/or terrestrial emissions from low latitudes, in contrast to CH4 and CO2 emission changes which are also influenced by processes located at high latitudes, we speculate that high latitudes could account for the distinction of DO/AIM events and glacial terminations. Nevertheless,
the tropics may strongly support large climate variations by large emissions of greenhouse gases. Explaining why climate does not enter an interglacial after DO/AIM events, in particular after the transition from MIS 4 to 3, could reveal crucial information about the mechanisms at play during glacial terminations.

Acknowledgments

We thank Dieter Lüthi for his support in assembling CO₂ records and Eric Wolff for his helpful comments on an earlier version of this manuscript. We benefited a lot from detailed and useful comments of two anonymous reviewers. This work, which is a contribution to the North Greenland Ice Core Project (NGRIP), the Talos Dome Ice Core Project (TALDICE) and the European Project for Ice Coring in Antarctica (EPICA), was supported by the University of Bern, the Swiss National Science Foundation, and the Prince Albert II of Monaco Foundation. NGRIP is directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, and is supported by funding agencies in Denmark (SNF), Belgium (FNRS-CBF), France (IPEV and INSU/CNRS), Germany (AWI), Iceland (RANNIS), Japan (MEXT), Sweden (SPRS), Switzerland (SNF) and the United States of America (NSF, Office of Polar Programs). TALDICE, a joint European programme, is funded by national contributions from Italy, France, Germany, Switzerland and the United Kingdom. Primary logistical support was provided by PNRA at Talos Dome. EPICA, a joint European Science Foundation/European Commission scientific program, is funded by the European Commission and by national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. The main logistic support was provided by IPEV/PNRA at Dome C and AWI at Dronning Maud Land. This is TALDICE publication no 8 and EPICA publication no 272.

Appendix A

A.1. Measurement technique for N₂O and CH₄

Following the extraction of ancient air from polar ice samples of about 40 g (University of Bern) or 50 g (Laboratoire de Glaciologie et Géophysique de l’Environnement, LGGE) by a melt-refreezing method, the air is injected into a sampling loop and analyzed for N₂ + O₂ + Ar, CH₄ (University of Bern and LGGE) and N₂O (University of Bern) by gas chromatography. The gas chromatographs are equipped with a thermal conductivity detector (TCD, for N₂ + O₂ + Ar), an flame ionization detector (FID, for CH₄) and an electron capture detector (ECD, for N₂O). See e.g. Flückiger et al. (2004) and Chappellaz et al. (1997) for detailed descriptions of the melt-refreezing method and the measurement systems. Parts of the N₂O and CH₄ records were measured with a slightly modified measurement system at the University of Bern. This modified system allows for up to 16 measurements per day (instead of up to 8 measurements per day with the unmodified system). The melt-refreezing air extraction method is unchanged. However, with the modified system we perform one single injection per sample instead of three injections with the unmodified system. The amount of analyzed air remains the same, since we now inject the air into a three times larger sampling loop. While with the unmodified system CH₄ and N₂O are cryofocused on one trap (at −196 °C) each, the two gases are now split by Y-splitters after a first chromatographic separation and then cryofocused on three traps each. Since the traps are heated up with some time lag, there are still three peaks in both, the FID and ECD. Both systems produce similar results, as indicated by remeasurements of previously measured samples along the TD ice core (adjacent depth systems produce similar results, as indicated by remeasurements of some time lag, there are still three peaks in both, the FID and ECD. Both cryofocused on three traps each. Since the traps are heated up with Y-splitters after a split by Y-splitters after a

A.2. Offset corrections for N₂O and CH₄ measurements

According to Spahni et al. (2005) we correct N₂O records measured at the University of Bern since the year 2003 by +10 ppbv in order to reach consistency with earlier records. This systematic offset of still unknown origin was determined by resampling EDC Holocene ice and by a comparison of the EDC and EDML Holocene N₂O records (Spahni et al., 2005). From the records used for the composite N₂O record (Fig. 1) the whole EDML and TD records, as well as the EDC record older than 40 kyr BP and the NGRIP record covering the DO events 17 to 15 are corrected by +10 ppbv. All other N₂O records have been measured before the shift occurred and are thus uncorrected. The offset correction was recently verified by remeasurements along the EDC and NGRIP ice cores. Along the EDC ice core, 74 remeasurements covering MIS 15, 5 and 3, as well as the Holocene were performed (Schilt et al., 2010). Although some inconsistencies between earlier measurements and remeasurements were observed during MIS 3, the remeasurements overall clearly indicated that the N₂O measurements performed at the University of Bern over many years are on a consistent reference scale, once the shift of 10 ppbv is taken into account (see Schilt et al., 2010 for more details). In order to cross-check the N₂O measurements performed at the University of Bern with measurements from a different lab, we compare all Bern measurements with the GISP2 N₂O record of Sowers et al. (2003). Figure 7 shows the GISP2 N₂O record together with all Bern data from different ice cores (see also Fig. 1) put on the EDC time scale by CH₄ synchronisation (Appendix A.4). We calculate the differences between the GISP2 N₂O data and the corresponding values of a smoothing spline through the Bern N₂O data with a cutoff period of 1000 yr according to Enting (1987). The mean of the differences is

ppbv. 59 reanalysed samples for N₂O reveal a median of the differences of −1.7 ppbv with a 95% confidence interval of [−3.3, 0.3] ppbv. In respect of the median of the differences, the unmodified and the modified system are, thus, statistically undistinguishable for both, CH₄ and N₂O concentrations.

In previous studies, the uncertainty of N₂O measurements has been determined by the square root of the sum of the squared standard deviation of measurements of bubble-free ice with standard gas and the squared standard deviation of the three measurements of each sample, multiplied by the corresponding t-value of the t-distribution due to the small statistics (Flückiger et al., 2004). The uncertainties calculated according to Flückiger et al. (2004) average to 3.8 ppbv and 3.9 ppbv for our new NGRIP record covering the DO events 17 to 15 and our new TD record, respectively. Along the TD ice core, however, we checked the reproducibility of N₂O measurements by series of five adjacent samples at nine different depth levels (Fig. 3). Overall, these measurements reveal a standard deviation of 5.6 ppbv with a 95% confidence interval of [4.6, 7.1] ppbv. Measuring adjacent samples may be the most reliable way to determine the reproducibility of our measurement system, since this method is based on measurements of air extracted from natural ice samples. The new measurements of adjacent samples indicate that the uncertainty could be slightly larger than estimated according to Flückiger et al. (2004). While we still use the latter uncertainty for the NGRIP record (due to missing measurements of adjacent samples along this ice core), we use the uncertainty based on measurements of adjacent samples for the TD N₂O record.

Along the TD ice core, the scatter of five adjacent samples during intervals with dust concentrations above and below the threshold of 300 ppbv is statistically indistinguishable. This observation further increases our confidence in MIS 2 N₂O concentrations measured along the TD ice core. However, we admit that series of adjacent samples may not be unambiguous to detect potential artefacts, since a similar series of adjacent samples along the EDML ice core revealed high concentrations apparently subject to in situ production of N₂O, but the measurements also did not show a large scatter.
Fig. 7. Comparison of Bern N2O data with GISP2 N2O data of Sowers et al. (2003). (A) Black: N2O data measured at the University of Bern along different ice cores (see Fig. 1). Red: smoothing spline with a cutoff period of 1000 yr calculated according to Enting (1987) through the Bern N2O data. In contrast to the smoothing spline in Figure 1, this smoothing spline does not include the GISP2 N2O data. Blue: GISP2 N2O data (Sowers et al., 2003). Crosses indicate values which are biased by the extraction process. Stars indicate diamond on the right shows the mean of the differences between GISP2 N2O data and the smoothing spline calculated through the Bern N2O data, with the orange error bar indicating the 95% confidence interval of the mean and the black error bar indicating the standard deviation of the differences. Note that this standard deviation does not correspond to the reproducibility of the measurement system (see Appendix A.2).

A.3. Measurement technique for dust

The dust concentration was measured with a laser based particle detector which has been described in detail in Ruth et al. (2002). The particle detector has been implemented in an established continuous flow analysis (CFA) system (e.g. Kaufmann et al., 2008; Röthlisberger et al., 2000), where ice core pieces of a cross section of 34 mm × 34 mm and 1 m length are melted continuously along the direction of the ice core. For decontamination reasons only the melt water of the inner of two concentric sections is pumped to the detectors. The dust concentration was recorded at an effective depth resolution of 1 cm (Ruth et al., 2002); however, we here use a smoothing spline with a cutoff period of 2000 yr (Enting, 1987). Gaps in the dust concentration record are due to wrongly calibrated or missing measurements. Note that for the depth interval of the brittle ice (667 to 1002 m) a partial contamination and, thus, too high dust concentrations cannot completely be ruled out. However, this does not affect the conclusions of this study.

A.4. Time scale synchronisation

In order to establish composite records consisting of CO2 and N2O measurements from different ice cores a common time scale is needed. We use the EDC3 gas age scale (Loulergue et al., 2007) as a reference and match the gas records of all other ice cores to this time scale. CH4 is most suited for such synchronisation, since it is globally well mixed and shows rapid and large natural variations synchronous in all ice cores (Blunier et al., 1998, 2007). Along the EDC CH4 record back to 140 kyr BP, we define 47 tie points which represent characteristic events (Fig. 1). Identification of the tie points in the CH4 records of all other ice cores and subsequent synchronisation to the EDC ice core leads to the desired common time scale. In order to determine the depth of the tie points we sometimes interpolate (on the depth scale) to the corresponding CH4 concentration. The age is linearly interpolated in-between the tie points and linearly extrapolated at the beginnings and ends of fragmentary CH4 records. For TD between 50 and 140 kyr BP we use the TALDICE1 time scale (Buiron et al., 2010), since TALDICE1 has been built based on CH4 synchronisation to the EDC3 time scale for this time interval. Since the time resolution of the Taylor Dome CH4 record is not adequate for some time intervals, we directly synchronise the Taylor Dome CO2 record to the Byrd CO2 record.

Appendix B. Supplementary data

Files containing new N2O and CH4 data from the TD, NGRIP and EDML ice cores, as well as the smoothing splines of the composite greenhouse gas records are linked to the online version of this paper at doi:10.1016/j.epsl.2010.09.027. The ice core records can also be downloaded from the website of the World Data Center for Paleoclimatology at www.ncdc.noaa.gov/paleo.
References

