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Eemian interglacial reconstructed from a
Greenland folded ice core
NEEM community members*

Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago)
have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the
Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling (‘NEEM’) ice core and
show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record
from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records.
On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago)
peaked at 8 6 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably
driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest
Greenland ice sheet decreased by 400 6 250 metres, reaching surface elevations 122,000 years ago of 130 6 300 metres
lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed
when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt
might become more common in the future.

A 2,540-m-long ice core was drilled during 2008–12 through the ice at
the NEEM site, Greenland (77.45uN, 51.06uW, surface elevation
2,450 m, mean annual temperature 229 uC, accumulation 0.22 m
ice equivalent per year). The top 1,419 m is from the current intergla-
cial, the Holocene, and together with the glacial ice below it can be
matched to the NGRIP GICC05 extended timescale1,2 down to
2,206.7 m (108 thousand years before present, referred to as kyr BP,
where ‘present’ is defined as AD 1950). Below this, the ice is disturbed
and folded, but it contains zones with relatively high stable isotope
values of H2O (d18Oice, a proxy for condensation temperature), indicating
that it stems from the last interglacial, the Eemian (130–115 kyr BP; Fig. 1).
Near bedrock, low d18Oice values suggest that the ice layers are
most probably from the glacial period before the Eemian. The lowest
5 m of the ice core contain accreted ice, with dark layers 1–20 cm thick
that contain high concentrations of basal material. In this study,
information from the Eemian period of the NEEM ice core will be
used to constrain the surface elevation of the ice sheet and the tem-
perature of this warm climate period. Measurements of d18Oice have
been made, and air bubbles trapped within the ice have yielded con-
centrations of CH4 and N2O, stable isotope valuesd15N of N2 andd18O
of O2 (d18Oatm), and total air content (see details in Supplemen-
tary Information). In addition, the rheology of the ice, radio echo
sounding (RES) images and surface temperatures and ice tempera-
tures are used in the interpretation.

Reconstruction of the climate record
Stratigraphic disruptions are identified from discontinuities of d18Oice

at depths of 2,209.60 m, 2,262.15 m, 2,364.45 m and 2,432.19 m.
Corresponding shifts in gas concentrations are found at these depths,
so the bubble enclosure process has not caused the expected depth
offset for stratigraphic undisturbed ice (Fig. 1). Possible disconti-
nuities below 2,432.19 m have not been investigated. The records of
CH4 concentrations and d18Oatm are also disturbed and are not iden-
tical with the globally-homogeneous signals documented at the
nearby NGRIP ice core (which contains undisturbed stratigraphy

back to 123 kyr BP) or with the EDML Antarctic ice core (which
reaches back more than 135 kyr BP)3–6. Measurements of N2O, d15N
and air content in the NEEM ice below 2,200 m further confirm these
discontinuities.

NEEM data reveal spikes in CH4 and N2O records between depths
of 2,370 m and 2,418 m, which are too rapid to be explained by cli-
matic variability and coincide with lower air content in the ice
(Figs 1b, 2, 4, shaded areas, and Supplementary Fig. 6). These cha-
racteristics point to surface melting or wet surface conditions. Indeed,
surface melting or percolating rain reduces the firn air content and
allows in situ production of CH4 and N2O. This hypothesis is sup-
ported by results in the near-surface ice from the warmer south
Greenland Dye3 ice core (Supplementary Fig. 9, mean annual tem-
perature 221 uC) and by measurements of noble gases over the
NEEM spikes, which also support the hypothesis of melting surface
layers (Supplementary Fig. 8). The lack of parallel variability in
d18Oice, d

15N or d18Oatm suggests that these parameters are uninflu-
enced by surface melting. The spikes occur in the warmest interval
at the depositional location indicated by water isotopes (d18Oice .

233%). The mean water isotope value over the past millennium is
233.6% at NEEM, and very few melt layers are found in the ice core
before 19957. During our NEEM field campaigns (2007–12), the mean
surface air temperature in July reached 25.4 uC (with annual mean
values of d18Ofirn . 233%; ref. 8), and studies with ice cores and
snow pits show that episodic melt events occurred. Over the period
12–15 July 2012, an exceptional heat wave produced significant
surface melt over 97% of the Greenland ice sheet, leaving a strong
fingerprint at the NEEM site in the form of melt layers 5–6 cm thick
at 50–70 cm below the surface.

For depths of 2,201.10–2,432.19 m, the NEEM records of d18Oatm

and the subset of CH4 values not corrupted by surface melting are
matched with globally-homogeneous signals of these values observed
from other ice cores6,9,10 (Supplementary Figs 4 and 5). For younger
ice, the nearby NGRIP d18Oice record is used as a reference tempera-
ture target for synchronization by assuming simultaneous abrupt
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climate changes at the transitions between stadials and interstadials11

(Supplementary Fig. 3).
In Fig. 2, the reconstructed NEEM records are shown on the

EDML1 timescale12 and compared to the NGRIP (light grey) and
EDML (dark grey) records. Zones 1 to 5, identified in Fig. 1, map
onto the timescale as coherent pieces. Zone 1 is folded such that the
records are mirrored and repeated, zone 2 and zone 3 cover identical
time periods, both inverted, while zone 4 (with melt-related spikes)
and zone 5 are undisturbed and contain the major part of the ice from
the Eemian (128.5–115 kyr BP) (Figs 2 and 3a, b). It cannot be ruled
out that small disruptions or folds are present within the individual
zones. The reconstructed records, however, show no unexpected dis-
continuities in either zones 1–5 or in all other measured parameters,
such as d15N (Fig. 2), dust or electrical properties. As the timescale is
transferred from the EDML ice core by matching it to the globally-
homogeneous signals, small undetectable disruptions will not influ-
ence the conclusions based on the parameters presented here. The
reconstruction is unambiguous and no other solution exists to match
the NEEM d18Oatm and the uncorrupted CH4 values simultaneously
to the undisturbed EDML and NGRIP records. No ice from 114–
108 kyr BP can be found in the NEEM ice core, while the ice layer
from 118–115 kyr BP is found three times (zones 2, 3 and 4), two of
which are inverted.

Northern Hemisphere temperatures are known to vary in parallel
with the atmospheric CH4 concentration13,14, which is seen to increase
abruptly into the warm Eemian period at 128 kyr BP at EDML. This is
evidence that no substantial warm phases of the NEEM Eemian
record are missing before 128.5 kyr BP. Ice from below 2,450 m (zone
6) appears to be too disturbed to reconstruct an age scale based on
the data available at present. The very low (glacial) d18Oice values
(244.9% at 2,476 m) are first found again in the record above
2,011 m. The ice layering at the NEEM site is undisturbed above
2,200 m (Fig. 3g), so the section below 2,476 m is believed to contain
ice older than 128.5 kyr BP from Marine Isotopic Stage (MIS) 6, and we
may speculate that the increased levels of d18Oice, CH4 and N2O at
2,480 m might be from MIS-7 interglacial.
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Figure 1 | Observed NEEM records. a, A surface elevation map (scale to the
right) of the position of the NEEM camp, including coloured upstream
depositional positions (upstream time marker scale below) of the ice found in
the NEEM ice core. The deep ice-core sites NGRIP, NEEM and Camp Century
and the tracks of the RES images shown in Fig. 3f and g (red lines) are shown on
the map. b, The observed records of d18Oice, d

18Oatm (reversed scale) CH4, N2O,
d15N and air content (reversed scale) from 2,162 m and deeper are plotted on
the NEEM depth scale (bottom x axis). The air content measurements from
LGGE and from University of Bern (thin curve, small symbols) are both
included. Zones 0–6 (blue, 0–2,206.5 m; cyan, 2,206.5–2,209.6 m; green,
2,209.6–2,262.2 m; orange, 2,262.2–2,364.5 m; red, 2,364.5–2,418.0 m; dark red,
2,418.0–2,432.2 m; and brown, 2,432.2–2,537 m) represent the sections of the
NEEM ice-core records with symbols marking the start (diamond) and end
(square) of each zone. There is no discontinuity between zones 4 and 5 but
spikes of CH4, N2O and air content occur in zone 4 (shaded grey). For
comparison, the NGRIP data are plotted as light grey curves on the NGRIP
depth scale on top of the plot. The NEEM and NGRIP depth scale are
synchronized between 2,162 and 2.207.6 m NEEM depths.
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Figure 2 | Reconstructed records from the NEEM ice core. The
reconstructed records of d18Oice, d

18Oatm (reversed scale) CH4, N2O,
d15N and air content (reversed scale) on the EDML1 timescale12. Zone 1
(cyan) is seen to contain a fold while zone 2 (green) and zone 3 (orange)
are reversed and cover identical time periods. NGRIP records (light grey)
and EDML records (dark grey) are included where they are available.
The CH4, N2O and air content records contain spikes from 127 to 118.3 kyr BP

(shaded grey).
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The disturbed and folded ice
RES data were collected in north Greenland during 2011 and 2012
with a multichannel coherent ice-penetrating radar depth sounder/
imager15,16. The RES images show continuous and undisturbed inter-
nal layers (isochrones) to a depth of about 2,200 m in the NEEM

region, which agrees with the ice-core observations17. Below 2,200 m,
internal layers become fuzzy and less continuous: undulations and
even overturned folds and shearing of basal material are observed
(Fig. 3f, g, Supplementary Fig. 2b–e). The transition between clear
and fuzzy layers often appears at the interface between ice from the
glacial and Eemian periods. Very large differences in ice rheological
properties are documented (Fig. 3c, d) between glacial ice (with crystal
sizes of 1.5 mm and a strong preferred vertical c-axis orientation) and
Eemian ice (with crystal sizes of 25 mm and multiple maxima fabrics).
The viscosities of these two types of ice differ by a factor of 50–100 (refs
18–21), allowing glacial ice to deform very easily while the interglacial
ice remains more rigid. The missing, folded and inverted parts of
the ice are from the interface between the relatively rigid Eemian
and the early glacial (118–106 kyr BP), supporting the idea that the
glacial ice deforms over the harder Eemian ice. The broken record at
128.5 kyr BP can be explained by contrasting the deformation pro-
perties of the underlying ice from the previous glacial period and
the Eemian ice. It should be noted that the discontinuous and folded
structures of the GRIP and GISP2 ice cores also occur for ice older than
105 kyr (refs 9, 10). The consistency of the RES images and deep ice-
core results at NEEM is a breakthrough result, and demonstrates that
RES imaging can now be used to predict folded ice layering. This
creates the potential for a systematic reconstruction of the Eemian
Greenland ice-sheet layering from new RES imaging. Assimilation
of such data in ice-sheet models may lead to much improved histories
of the configuration of the ice sheet in the past, improving our ability to
predict its future evolution.

Climate reconstruction from observed records
The reconstructed Eemian sequence (128.5–114 kyr BP, Fig. 2) allows
for initial climate interpretations of this period. As mentioned above,
the regular occurrence of melt features at 127–118.3 kyr BP is an
indication of warmer temperatures at the depositional surface loca-
tions of the ice than the mean of the recent millennium at NEEM. This
is independently confirmed by the decrease of d15N in this zone,
which is indicative of ,5 uC warmer mean annual firn temperatures
at the depositional site22,23 (Supplementary Fig. 7). Between 128.5 kyr
BP and 126.0 kyr BP, d18Oice increases from 235% to 231.4% while
EDML d18Oice values slowly drop from those of the warm early
Antarctic period24. This bipolar see-saw behaviour suggests that
inter-hemispheric heat redistribution by the Atlantic meridional
overturning circulation25 was taking place within the Eemian inter-
glacial period; this has also been observed during the last Northern
Hemisphere deglaciation 19–11 kyr BP24–27. Before surface melt began
between 128.5 and 126.7 kyr BP, the air content at the depositional
site had a stable level of 85 ml kg21 compared to the present level of
97.5 ml kg21. When corrected for changing local summer insola-
tion28–30 (Supplementary Fig. 10), the air content difference suggests
a surface elevation at the depositional site 540 6 300 m higher at
the onset of the Eemian (128 kyr BP) than the surface elevation at
NEEM today28,31–33. The locations of the depositional sites of the
Eemian ice found in the NEEM ice core are modelled using a nested
three-dimensional flow model34 (Fig. 1a and Supplementary Fig. 1). A
second model used to date the NEEM ice core reaches similar loca-
tions35 within 20 km. At present, the surface elevation at the deposi-
tional site of the 128-kyr-BP ice (205 6 20 km upstream from NEEM)
is 330 6 50 m higher than the present at NEEM33,34. The surface eleva-
tion increase of 210 6 350 m at the 128-kyr-BP depositional site
(Fig. 4c, blue) is the difference between the elevation at 128 kyr BP

(540 6 300 m) and the present elevation (330 6 50 m), both related
to the present elevation at NEEM. This surface elevation increase is
expected at the onset of a warm climatic period due to increased
precipitation and mass balance changes that occur before the central
part of the ice sheet adjusts to the warmer climate by increasing the ice
flow. This is also established at the onset of the present interglacial
at 11.7 kyr BP32.
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Figure 3 | Disturbances of the deep NEEM ice. a, The reconstructed NEEM
water stable isotope record (black curve) including NGRIP data between 114–
108 kyr BP (grey) on the EDML1 timescale that has been colour coded
according to age. Below 2,432.19 m (grey shading) no dating has been
attempted. b, The colour-coded data plotted with the original data on the
NEEM depth scale visualizing the discontinuities and the reversed sections.
c, d, c-Axis orientations on Schmidt diagrams for depths 2,203 m, 2,308 m and
2,395 m (c) and polarized light pictures of ice thin sections from the same three
depths (d) demonstrate the very different ice rheology of the glacial and
interglacial ice, leading to different flow properties. e, Cartoon of a possible
history of the formation of two overturned folds at NEEM inspired by the
observed undulations in the RES images (f and g). f, g, Center for Remote
Sensing of Ice Sheets (CReSIS) ice-penetrating RES images from NASA
Operation IceBridge campaign 2011. f, A 52-km-long line to the west that
illustrates that overturning folds do occur (MCORDS: 20110329_02_020); g, a
48-km-long line crossing the deep drill site (MCORDS 20110329_02_028). The
NEEM site is marked on the image, and two dated horizons are marked. More
details can be found in Supplementary Information.
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In the period 127–118.3 kyr BP, the air content in the ice where
surface melt occurred was highly variable and cannot directly be used
for ice elevation reconstructions (Fig. 2, shaded zone). We can tenta-
tively estimate elevation changes through the Eemian climate period
by connecting the two air content levels before and after the melt zone
(Fig. 4b) after correcting for summer insolation, which accounts for
50% of the observed change (Fig. 4c, Supplementary Information).
At 126 kyr BP the surface elevation was 45 6 350 m higher than at
present. The d18Oice increased to 231.4% at 126 kyr BP, exceeding
the current mean value of the recent millennium of 233.6% (at the
NEEM site) and the current mean value of 235.0% at the deposi-
tional site32,33 (Supplementary Information, section 2). Using the
temperature–isotope relation of 2.1 6 0.5 K%21 (calibrated using
data from the present interglacial32), the 3.6% anomaly at 126 kyr

BP implies that precipitation-weighted surface temperatures were
7.5 6 1.8 uC warmer at the depositional site compared to the last
millennium. Note that the modelled location of the depositional site
is the only modelled parameter required to compare the 126-kyr-BP

data to the present-day data at the depositional site. When further
correcting for the more uncertain elevation change of 45 6 350 m at
the 126-kyr-BP depositional site using a lapse rate of 7.5 6 0.5 K km21,
the fixed-elevation temperature increase here is 8 6 4 uC (Fig. 4a, red).
Our data depict a gradual cooling until 110 kyr BP (Fig. 4a, red curve).

The reconstructed precipitation-weighted annual temperature
changes are remarkably high. In general, warmer summer tempera-
tures are reported from palaeorecords36,37, and a few find tempera-
tures at 126 kyr BP on high Arctic latitudes as high as those reported
from NEEM38–40. Climate models equipped with water stable iso-
topes point to a limited (1 uC) seasonality bias caused by a stronger
enhancement of temperature and precipitation in summer than in
winter41–43. A large spread in temperature has been reported among
simulations of the last interglacial climate, which appear to systema-
tically underestimate North Atlantic/Arctic warming, possibly due to
missing vegetation and ice-sheet feedback37,42,43.

Within 6,000 yr, from 128 to 122 kyr BP, the surface elevation is
estimated to have decreased from 210 6 350 m above to 130 6 300 m
below the present surface elevation, which translates to a moderate
ice thickness change of 400 6 350 m after accounting for isostatic
rebound. Based on this estimate, the ice thickness at NEEM decreased
by an average of 7 6 4 cm per year between 128 and 122 kyr BP and
stayed at this level until 117–114 kyr BP, long after surface melt
stopped and temperatures fell below modern levels.

Even with minimum ice thickness of only about 10% less than the
present ice thickness at the NEEM site, as reported here, substantial
melting can cause significant reduction of ice thickness near the mar-
gins; this in turn reduces the volume of the Greenland ice sheet.
Although the documentation of ice thickness at one location on the
Greenland ice sheet cannot constrain the overall ice-sheet changes
during the last interglacial period, the NEEM data can only be recon-
ciled with Greenland ice-sheet simulations30 that point to a modest
contribution (2 m) to the observed 4–8 m Eemian sea level high
stand44,45. For comparison, no continuing elevation change has so
far been detected in areas with elevations above 2,000 m in north
Greenland during the past few decades46. These findings strongly
imply that Antarctica must have contributed significantly to the
Eemian sea level rise47.

Despite the complex ice flow, the disturbed record of the deep ice in
the NEEM ice core can be unambiguously reconstructed. The ana-
tomy of the last interglacial shows that Greenland temperatures
peaked after the onset of the Eemian, 126 kyr BP, with temperatures
(at fixed elevations) 8 6 4 uC warmer than the average of the recent
millennium and multiple indications of summer melt. Temperatures
gradually decreased during the interglacial, very probably owing to
the strong local summer insolation decreasing trend. The surface ele-
vation first increased due to increased mass balance to 210 6 350 m
above the present at 128 kyr BP, then decreased to 130 6 300 m below
the present elevation around 122 kyr BP. Our results provide multi-
ple new targets to constrain coupled climate/ice-sheet models. Our
record, together with recent observations of rainfall and strong
surface melting in July 2012 at NEEM, show that conditions are
conducive to the start of melt layer formation at NEEM, with the
2010–12 mean annual surface temperatures 1–2 uC above the 1950–
80 average.

Our results have implications for both ice deformation near the
bedrock and the response of the Greenland ice sheet to climate
change. The combination of high-resolution RES data and NEEM
glacial–interglacial ice layers brings new knowledge of the near-bed
deformation of ice. We believe that the folding and disturbances we
observe near the bed are strongly related to the rigid deformation
properties of the interglacial ice. This offers an alternative explanation
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Figure 4 | Reconstruction of the temperature and elevation history.
Reconstruction of the temperature and elevation history through the Eemian
based on the stable water isotopes (d18Oice) and the air content records. The
zone with surface melt (127–118.3 kyr BP) is shaded in light grey. a, The
measured d18Oice record (black) on the constructed timescale. The average of
the recent millennium (233.60%) is marked with a thin black line. It is seen
that the d18Oice values at the depositional locations in the melt zone are above
233.0% (grey horizontal line). The fixed-elevation change of temperature—
constructed from the observed d18Oice, the elevation changes determined from
the air content and the upstream corrections (curves below)—is shown as a red
curve using the red axis. The standard error range (orange shading) is a sum of
the error of the d18Oice and the elevation change correction (Supplementary
Information 1.1, equations (2) and (5) in Supplementary Information,
Supplementary Table 2). b, Air content (black) is plotted and guided by the two
stable levels on each side of the melt zone. A dot-dashed line connecting these
levels has been suggested with an error range as the dark grey shaded area. The
standard error range is a sum of the error assumed in the zone with surface melt
(127–118.3 kyr BP) and the 1% error on the air content measurements
(Supplementary Information section 1.4). In addition, the average level 107–
105 kyr BP is marked with a horizontal black bar. The changes in the air content
are caused by pressure changes due to changing surface elevation at the
depositional sites and changes to the air trapping processes in the firn assumed
to be controlled by the changing summer insolation28,32,49,50. c, When corrected
for upstream flow (cyan) and summer insolation changes (green), the air
content curve can be ‘translated’ to elevation changes (blue, dashed) with the
shaded zone indicating the uncertainty range introduced by this translation.
Blue bars mark the air content of the ‘translated’ air content black bars. The
standard error range is based on the error range of the air content (dark grey
shaded area) and the additional standard errors from calculation of the
elevation changes (equation (5) in Supplementary Information, and
Supplementary Table 2).
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for the large anomalies in RES profiles recently observed under both
the Antarctic and Greenland ice sheets, which were previously attri-
buted to refrozen basal water48.

METHODS SUMMARY
Measurements of stable water isotopes in the ice (d18Oice) and CH4,
N2O concentrations and the isotopes d15N of N2 and d18Oatm of O2,
noble gases and the air content have been measured in the air
extracted from the air bubbles in the ice, all using well-described
methods. These measurements are presented in Supplementary
Information section 1. Models calculating temperatures from water
isotopes, elevation changes from air content, and temperature
changes from d15N values have been calibrated using observations
from the present interglacial.

Received 31 July; accepted 13 November 2012.
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