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Large Variations in Southern
Hemisphere Biomass Burning
During the Last 650 Years
Z. Wang,1 J. Chappellaz,2 K. Park,1 J. E. Mak1*

We present a 650-year Antarctic ice core record of concentration and isotopic ratios (d13C and
d18O) of atmospheric carbon monoxide. Concentrations decreased by ~25% (14 parts per billion
by volume) from the mid-1300s to the 1600s then recovered completely by the late 1800s. d13C
and d18O decreased by about 2 and 4 per mil (‰), respectively, from the mid-1300s to the 1600s
then increased by about 2.5 and 4‰ by the late 1800s. These observations and isotope mass
balance model results imply that large variations in the degree of biomass burning in the Southern
Hemisphere occurred during the last 650 years, with a decrease by about 50% in the 1600s, an
increase of about 100% by the late 1800s, and another decrease by about 70% from the late
1800s to present day.

Carbon monoxide (CO) plays a key role in
the chemistry of the troposphere, largely
determining the oxidation potential of the

atmosphere through its interaction with hydroxyl
radical (OH). CO also interacts with atmospheric
methane, a gas whose preindustrial variability is
the topic of continuing debate (1, 2). Little is
known about the variability of CO before the
industrial age (3) or about the anthropogenic im-
pact on its budget, although both affect atmospheric
CH4 and O3 budgets and related climate-chemistry
interactions.

The main sources of atmospheric CO include
atmospheric oxidation ofmethane and nonmethane
hydrocarbons (NMHCs), biomass burning, and fos-
sil fuel combustion (4). These sources account
for about 90% of today’s global CO budget (4).
Stable isotopic ratios (d13C and d18O) in atmo-
spheric CO help to resolve the relative contribu-

tions of these sources and thus to better estimate
the global CObudget (5). To date, no isotopic ratios
from CO in ice have been reported, and few CO
mixing ratio measurements have been reported
(1, 3, 6). Through use of a recently developed ana-
lytical technique (7), we present measurements of
CO concentration ([CO]), d13C, and d18O from a
South Pole ice core [89°57'S 17°36'W; 2800 m
above sea level (asl)] and from the D47 ice core
(67°23'S154°03'E; 1550masl) inAntarctica (Fig. 1).

The combined changes in [CO], d13C, and d18O
during the past 650 years should reflect variations
in both total CO flux and a shift in relative source
strengths over time. [CO] shows a decreasing trend
from 53 T 5 parts per billion by volume (ppbv) in
the mid-1300s to a minimum of 38 T 5 ppbv in the
1600s. CO mixing ratio then increases to a rel-
atively constant value of 55 T 5 ppbv in the late
1800s. Good agreement was observed between
our [CO] data and previous measurements on
Antarctic ice samples (3, 6). Trends in both d13C
and d18O look similar to the [CO] record up to the
late 1800s. d13C [Vienna Pee Dee belemnite
(VPDB)] and d18O [Vienna standard mean ocean
water (VSMOW)], respectively, decreased from
–28.0 T 0.3‰ and 0.6 T 0.7‰ in the mid-1300s
to –30.2 T 0.3‰ and –3.4 T 0.7‰ in the 1600s,

then increased to –27.4 T 0.3‰ and 0.8 T 0.7‰
by the late 1800s.Minimum values of [CO], d13C,
and d18O roughly coincide with the Little Ice Age
(LIA; circa 1500–1800), as defined in the North-
ern Hemisphere.

Observations from Berkner Island (79°32.90'S
45°40.7'W; 890 m asl) firn and present day sam-
ples are also shown in Fig. 1. The slight decrease
of [CO] from the late 1800s to present day is thus
accompanied by large shifts in both d13C and d18O,
which is a result of variations in relative source
strengths during the past century. In particular,
methane-derived CO, which is dependent upon
methane concentration and depleted in both d13C
and d18O, increased dramatically—by 13 ppbv—
during this time (Fig. 2). Because there was
little difference in overall [CO] between the late
1800s and present day, contributions from other
CO sources must have decreased by a similar
amount. Data from Berkner Island firn air show
an increase in [CO] and a decrease in d13C since
1970 (8), reflecting the increase in atmospheric
methane (9).

The contribution from fossil fuel combustion
is negligible before the 1900s according to his-
toric CO2 emissions data (10). In addition, simu-
lations from the Model for Ozone and Related
chemical Tracers (MOZART-4) (11) show the
fossil fuel combustion contribution to today’s CO
budget in Antarctica is only 2 to 3 ppbv. Thus, the
main sources of CO able to explain our signals are
biomass burning and NMHC oxidation.

We can use isotopic compositions to help dis-
tinguish combustion-derived CO (such as bio-
mass burning) from noncombustion-derived CO
(such as hydrocarbon oxidation). C18O is a useful
tracer for this because of large differences in the
oxygen isotopic composition between combus-
tion and noncombustion sources of CO (12). The
d18O signature from combustion sources is sig-
nificantly enriched as compared with the d18O
signature from hydrocarbon oxidation processes
(12, 13). The d18O value for biomass burning–
derived CO is generally between 15 and 22‰, de-
pending on specific combustion conditions (13–15).

We used an isotope mass balance model to es-
timate the ratio of combustion to noncombustion

1Institute for Terrestrial and Planetary Atmospheres/School of
Marine and Atmospheric Sciences, Stony Brook University,
Stony Brook, NY 11794–5000, USA. 2Laboratoire de Glaciologie
et Géophysique de l’Environnement (LGGE), CNRS, University of
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sources over the time period of interest (11).
Steady-state atmospheric conditions were as-
sumed on the basis of the relatively short lifetime
of CO (weeks to months) as compared with the
integrated sampling time for a typical ice core
sample (~10 years for the D47 ice core and ~30
years for the South Pole ice core). Resulting source
emission estimates are shown in Fig. 2. Also shown
are source emission estimates over the last three
decades and those in present day. CO fromNMHC
oxidation did not change significantly, whereas CO
from biomass burning showed a large “saddle”
trend, with maxima in both the mid-1300s and the
late 1800s and a minimum in the 1600s. The ob-
served trend in [CO], d13C, and d18Owas therefore
mostly driven by variations in biomass burning,
and compared with present day, biomass burning
was almost the same in the late 1800s as that in the
mid-1300s. This is consistent with the correlation
observed between d18O and CO concentration
(fig. S1). The y intercept of 9‰, corrected for the
inverse mass-dependent kinetic isotope effect
(KIE) for CO+OH (16) during atmospheric trans-
port, leads to a mean oxygen isotopic signature of
the source of 15 to 18‰, which indicates a pre-
dominant combustion source.

We have assumed that the observations were
driven by variations in CO source strengths. It is
possible, however, that the removal rate of CO by
OH could have changed. However, if that were
the case, then a slight enrichment in d13C should
be observed because of the KIE (16). This is con-
trary to the observations. The second largest loss
mechanism known for CO (but only accounting
for 10%) is uptake by soils, which is largely de-
pendent on soil surface area andmean temperature
(17), both of which have not changed much in the
Southern Hemisphere during the past several hun-
dred years (18).

Satellite data combined with biogeochemical
models to interpret the interannual variability of
global biomass burning emissions show that from
1997 to 2004, lower temperature and higher pre-
cipitation correlated with reduced biomass burning
emission (19). On longer time scales, biomass
burning was shown to increase with the rapid
Dansgaard/Oeschger warmings of the last glacial,
probably because of increased vegetation produc-
tivity and fuel availability for burning (20).

Our calculated biomass burning trend (Fig. 2)
is generally consistent with the tropical charcoal
index (Fig. 3) (21). The charcoal index, which is
a proxy for biomass burning, suggests a decline
from ~0 to ~1750 followed by a sharp increase
between 1750 and 1870 and a substantial decrease
during the past century (21). Because of the fast
deposition of charcoal particles, the charcoal index
reflects a more regional component of biomass
burning as compared with CO; however, the gen-
eral trends for the two records are consistent within
the range of calculated uncertainty, with perhaps
the exception of the period of 1600–1700. The
initial decline in biomass burning occurred in con-
cert with a global cooling trend, reflecting the
impact of climate change (21). The cooling was

more muted on average in the Southern Hemi-
sphere (22). But in a region such as southern South
America, warm episodes are recorded before 1350
and in the early 19th century (23), coinciding with
the stronger biomass burning emissions of CO
deduced from our record. Since the 1700s, the in-
crease of biomass burning has probably been in-
fluenced by both natural and anthropogenic
forcings. This trend is also consistent with Berkner
Island firn air data from ~1970 to present day.

Such a reduction may result from a shift toward
intensive grazing and fire management (24),
which could lead to a change in landscapemakeup
and subsequently less biomass availability in some
regions (25).

Biomass burning changes during the last two
millennia have also been evaluated by using [CH4]
and d13CH4 records from the Law Dome ice core
(1). These investigators conclude that the pyrogen-
ic emissions of CH4 decreased by ~40% on the

Fig. 1. The 650-year records of [CO], d13C, and d18O from two ice cores: D47 ice core (diamonds) and
South Pole ice core (squares). (A) [CO]. (B) d13C. (C) d18O. Error bars represent analytical uncertainties.
The shaded area shows the timing of the LIA. Also shown are observations of annually averaged [CO],
d13C, and d18O of atmospheric CO (crosses) at Scott Base in 1991 (13). Berkner Island firn air data (stars)
(8) roughly covering the last three decades of the 20th century show a 5 ppbv increase of [CO], 2.5‰
decrease of d13C, and a slight increase in d18O since the late 1960s.
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global scale in 1700 relative to the emissions from
0 to 1000, a figure that is consistent with our cal-
culated ~50% drop of biomass burning emis-
sions of CO during the 1600s in the Southern
Hemisphere. Furthermore, recent research based
on the stable isotopic ratios of methane in the
West Antarctic Ice Sheet (WAIS) Divide ice core
(79°27.7'S 112°7.51'W; 1759 m asl) also indicates
that the median biomass burning source strength
decreased by 38 T 1% from the period of 990–
1460 to 1689–1730 (26).

Long-term variations in atmospheric circula-
tion could have partly modulated the long-range
transport of biomass burning CO from the tropics

to the high-latitude Southern Hemisphere (27),
thus contributing in part to the calculated CO var-
iability. For instance, a strengthened polar vortex
could inhibit latitudinal exchanges and extratrop-
ical CO intrusion into the Antarctic atmosphere.
However, the last period of intensification of south-
ern circumpolar westerlies and accompanying rel-
atively cooler conditions over East Antarctica (28)
andWest Antarctica occurred ~1200 to 1000 years
ago (29), well before the period of this study.
Although it cannot be entirely ruled out, indications
are that circumpolar circulation did not change
significantly during this period and did not have a
large impact on CO large-scale transport.

Another possible process that has amajor effect
on themeridional transport of CO is themovement
of the Intertropical Convergence Zone (ITCZ)
(30). Paleoclimatic evidence from continental Asia
(31), Africa (32), the Americas (33), and the Pacific
Ocean (34) suggests that a southward shift of the
ITCZ occurred during the past millennium, reach-
ing its southernmost position some time during
the LIA (34). As the ITCZ shifts southward, less
CO produced from biomass burning will be trans-
ported to the Southern Hemisphere. This would
have reduced the contribution of Southern Hemi-
sphere biomass burning to [CO] observed in Ant-
arctica during the LIA. A southward shift of
the ITCZ position would also shift rainfall pat-
terns southward because precipitation follows
the ITCZ (35). A southward shift of precipitation
could also contribute to a decrease in biomass
burning during the LIA because dry conditions
favor biomass burning.

Previous modeling studies suggest that pre-
industrial biomass burning was much lower than
today, with a reduction of up to 90% (36–38).
This is the common assumption in climate model
simulations. However, our results show that present-
day CO from Southern Hemisphere biomass
burning is lower than at any other time during the
last 650 years. This is particularly relevant be-
cause assumptions on preindustrial [CO] are an
important component for correctly estimating the
radiative forcing of tropospheric ozone in pre-
industrial times (39). [CO] changes due to bio-
mass burning also suggest that there were decadal
and centennial scale variations in average concen-
trations of black carbon, which is another major
atmospheric constituent produced with burning,
leading to the unanswered question of its potential
role in long-term climate variability.
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Structural Basis of Biological
N2O Generation by Bacterial
Nitric Oxide Reductase
Tomoya Hino,1,2,3 Yushi Matsumoto,1,4 Shingo Nagano,1,5 Hiroshi Sugimoto,1

Yoshihiro Fukumori,6 Takeshi Murata,2,3 So Iwata,2,3,7 Yoshitsugu Shiro1

Nitric oxide reductase (NOR) is an iron-containing enzyme that catalyzes the reduction of nitric oxide
(NO) to generate a major greenhouse gas, nitrous oxide (N2O). Here, we report the crystal structure of
NOR from Pseudomonas aeruginosa at 2.7 angstrom resolution. The structure reveals details of the
catalytic binuclear center. The non-heme iron (FeB) is coordinated by three His and one Glu ligands,
but a His-Tyr covalent linkage common in cytochrome oxidases (COX) is absent. This structural
characteristic is crucial for NOR reaction. Although the overall structure of NOR is closely related to COX,
neither the D- nor K-proton pathway, which connect the COX active center to the intracellular space,
was observed. Protons required for the NOR reaction are probably provided from the extracellular side.

Nitrous oxide gas (N2O) is now the greatest
threat to the ozone layer and also in-
duces climate change as a greenhouse

gas more powerful than carbon dioxide and
methane (1). Agricultural fertilizers, fossil fuel

combustion, biomass burning, and animal waste
contribute to N2O production. However, the
largest emission source of N2O into the atmo-
sphere is bacterial breakdown of nitrogen com-
pounds in soils and in the oceans. Denitrifiers

perform the step-by-step chemical reduction of
nitrogen oxides (NO3

– and NO2
–) to N2, produc-

ing N2O as an intermediate by-product: NO3
– →

NO2
– → NO → N2O → N2. The key enzyme in

N2O production is nitric oxide reductase (NOR),
which catalyzes the reduction of nitric oxide (NO)
with two electrons and two protons: 2NO + 2e– +
2H+ → N2O + H2O. The NOR reaction is also
of interest to synthetic chemists because it in-
volves N-O bond cleavage and N-N bond for-
mation (Scheme 1). Structural and functional
models of the active site of NOR have been syn-

1RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148,
Japan. 2Japan Science and Technology Agency, Exploratory
Research for Advanced Technology, Human Receptor Crystal-
lography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-
8501, Japan. 3Department of Cell Biology, Graduate School of
Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo, Kyoto
606-8501, Japan. 4Division of Protein Chemistry, Post-Genome
Science Center, Medical Institute of Bioregulation, Kyushu
University, Fukuoka 812-8552, Japan. 5Department of Chem-
istry and Biotechnology, Graduate School of Engineering,
Tottori University, Tottori 680-8552, Japan. 6Graduate School
of Natural Science and Technology, Kanazawa University,
Kanazawa, Ishikawa 920-1192, Japan. 7Division of Molecular
Bioscience, Membrane Protein Crystallography Group, Imperial
College London, Exhibition Road, London SW7 2AZ, UK.

Fig. 3. Correlation between the derived CO from biomass burning (green line) and the sedimentary
charcoal record compilation in the tropics (30°N–20°S) (red line) (21). The red shaded area represents
charcoal indexmeasurement uncertainties. The blue shaded area is the same as that in Fig. 2C. Also shown is
the MOZART-4–simulated CO from biomass burning emission at Scott Base for the modern atmosphere.
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