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An ice core air content record that was recovered from the refrozen-recrystallization ice formation zone
in the Dasuopu Glacier was investigated in this work, which showed that the air content in ice performed

significant fluctuations both in the seasonal and long-time series. The air content was low in summer and
high in winter, and fluctuated around the mean value of 5.025 cm> per 100 g ice from AD 1571 to AD
1927. The correlation of the air content in ice with the climatic and environmental factors was discussed
combining with the dating results, which showed that over about 400 yrs from AD 1570 to AD 1927 the
air content in ice from the refrozen-recrystallization ice formation zone in the Dasuopu Glacier was
mainly dominated by the insolation intensity rather than the temperature and other environmental
factors in the Southern Tibetan Plateau.

© 2010 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

The air bubbles trapped in ice offer a source of abundant climate
information and could be used for the reconstruction of regional
and global climate change (Brook, 2005). Based on studies of ice
core air bubbles in polar and mid-low latitude regions (Barnola
et al,, 1987, 2008; Blunier et al., 1995; Chappellaz et al., 1997; Xu
and Yao, 2001; Jouzel et al., 2007), the correlation between the
concentrations of greenhouse gases (CO,, CH4 and N»O etc.) and the
temperature and precipitation over different time series had been
reconstructed. Because the air content in ice is highly sensitive to
the variation of physical character of ice and the transformation of
ice formation zones which were both induced by climate and
environment changes (Anderson and Benson, 1963; Martinerie
et al,, 1992; Paterson, 1994; Raynaud et al., 1997, 2007), it also
could provide a feasible means to reconstruct the regional and
global paleoclimate evolution.

Study of the air content in ice was pioneered by Langway (1958),
and until now most of the studies were developed in the polar
regions. Investigations on the air content in ice in the polar regions
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showed that the air content (represented by volume) in ice was
mainly dominated by the atmospheric pressure and temperature in
the dry ice formation zones. A coupled relationship among the ice
sheet scale, sea level and climate change has been established
(Martinerie et al., 1992; Raynaud et al., 1997; Delmotte et al., 1999;
Krinner et al., 2000), which had provided significant databases to
the reconstruction of the regional and global paleoclimate change
and water cycle.

However, few studies have been done on the air content in ice in
the Tibetan Plateau. Recently, only the East Rongbuk (ER) ice cores
that were recovered from the percolation zone of East Rongbuk
Glacier in Mt. Everest had been investigated for the air content in
ice (Hou et al., 2007) which indicated that the air content in ER ice
cores was mainly correlated with the magnitude and frequency of
snow melting on the glacier surface in summer. No investigations
had been done on the ice core air content record in the refrozen-
recrystallization ice formation zones in the Tibetan Plateau. The
general variation trend and its implications to the climate and
environment changes were unknown.

This work used an ice core which was recovered from the refro-
zen-recrystallization ice formation zone in the Dasuopu Glacier to
reveal the variations of the air content in ice and its implications to
the climate and environment changes in the Tibetan Plateau. This
will provide available approach to the reconstruction of paleo-
climate and paleoenvironment changes in the Tibetan Plateau.
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2. Material and methods
2.1. Material

Dasuopu glacier (28° 23’ N; 85° 43’ E) (Fig. 1) is located at the
northern slope of Mt. Xixiabangma, central Himalayas. The glacier
terminates at about 5600 m a.s.l. and the snowline of this glacier is
at about 6000 m a.s.l. According to the automatic weather station at
an altitude of 6800 m a.s.l. on this glacier, the mean annual
temperature was only —18.1 °C. The maximum and minimum mean
daily temperatures were —5 °C and —33.5 °C respectively during
the summer of AD 2006. The annual glacial accumulation is about
1000 mm per year which allows for a high resolution record of the
climatic and environmental information in the ice. There is a 4 km
long and 1 km wide refrozen-recrystallization ice formation zone
on the top of the glacier between the altitudes of 7000—7200 m
a.s.l. (Yao et al,, 1998; Xu and Yao, 1999). Borehole temperature here
at the depth of 10 m is —16 °C and —13.8 °C at bedrock, which
indicate a suitable condition for the recrystallization of the fallen
snow (Paterson, 1994; Yao et al.,, 1998; Qin and Ren, 2001). In AD
1997, three ice cores were recovered from this wide recrystalliza-
tion ice formation zone at an altitude of ©7100 m a.s.l. Core 2,
149.8 m long, was used for the analyses of the air content in ice.

Pretreatment of the ice core samples were performed in the
Laboratory of Ice Core and Cold Region Environment (LICCRE) and
all the ice samples for the air content detection were selected below
the firn close-off depth (47 m, Xu and Yao, 1999). From the depth of
49.82 m—52.41 m the ice core was uninterruptedly partitioned at
length intervals of 5—10 cm to investigate the seasonal variation
characters of the air content. Another 169 ice samples were selected
from the depth interval of 49—148 cm to investigate the long-term
variations of the air content. Each sample is about 75 g and 5 cm in
length. This study only used the ice samples from the depth interval
of 49—118 cm for the discussion of air content in ice. The deeper
part of the Dasuopu ice core was not used because of the relatively
long sampling intervals and low time resolution.

2.2. Measurement methods

Measurements of the Dasuopu ice core 2 were performed both
in the Laboratory of Ice Core and Cold Region Environment (LIC-
CRE), Chinese Academy of Sciences and the Laboratoire de Glacio-
logie et Géophysique de I'Environnement (LGGE) in France. The
melting—refreezing method (Xu et al., 2002) was used to extract
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Fig. 1. Locations of the ice core drilling sites, with the shaded region presenting the
Tibetan Plateau.

the air bubbles trapped in ice in LICCRE, and similar technique as
described in reference (Chappellaz et al., 1997) were also performed
for the extraction of the air bubbles in LGGE. The ice core air content
value was obtained during the measurement of atmospheric
methane in the ice core. First, before melting—refreezing of the ice,
the quality of each ice core sample was weighted up, by which the
volume of the pure ice after refreezing could be calculated. Then,
during the measurement of atmospheric methane in the ice,
a capacitive pressure sensor was used to detect the air pressure of
each gas injection to the Gas Chromatograph. Therefore, combining
with the pressure of the sample loop that had reached air balance,
the volumes of the sample loop and the stainless steel container
that had already been measured, the air volume of each ice core
sample by the standard atmospheric pressure (1013 mbar) and
standard temperature (273 K) can be calculated. The calculation
equation is given below:

PsVs  Po(Vc — Vi) n PoVg
Ts Tc Tg

With:

Ps and Ts: the standard atmospheric pressure and temperature
(1013 mbar, 273 K),

Po and Tc: the atmospheric pressure and temperature when the
ice core air reaches balance in the stainless steel container and the
sample loop,

Vs, Vc, Vi and Vg: the air volume by the standard condition
(1013 mbar, 273 K), the volumes of the stainless steel container,
pure ice, and sample loop.

Finally, the air content of each ice sample is obtained by dividing
the air volume with the ice core quality.

According to Xu et al. (2002) only 0.1%—0.3% of the total air
volume is obtained from the repeating melting—refreezing
processes, which indicates that the melting—refreezing method is
applicable for the measurement of the air content in ice. The system
measurement error on air content in Dasuopu ice core in LICCRE is
"3%. Meanwhile, according to Chappellaz et al. (1997), the experi-
mental error on the air content in Dasuopu ice core in LGGE is 5%,
which is mostly due to the uncertainty on the gas temperature
inside the sample container. Therefore, both the measurement
results of air content in Dasuopu ice core from the LICCRE and LGGE
were reliable and could be used for the further discussion of its
variation trend and implications.

(1)

2.3. Data

Because a portion of air would be lost from cut-bubbles at the
surface of the ice sample (Raynaud et al., 1982) and more air would
be lost from the shallower ice samples due to their bigger bubble
diameter than that in deeper ice samples (Hou et al., 2007), this
should be carefully considered during the revision of the air content
results in ice. For ice samples taken from polar dry snow zones,
Raynaud et al. (1982) had established an air volume revision system
according to their investigations both on the bubble diameter and
ice quality. On the other hand, Hou et al. (2007) had also mentioned
an air volume revision system for ice samples taken from the
percolation ice formation zones in the Tibetan Plateau. However,
for Dasuopu ice core which was recovered from the refrozen-
recrystallization ice formation zone, no data revision system for the
air volume lost during the cut-off process had been established.
Therefore the data revision for the air content results in Dasuopu
ice core should be seriously considered.

Fig. 2 shows the densification process of snow at Dasuopu core
site. From Fig. 2a, the pores in the firn are gradually enclosed during
the firn—ice transition. Besides, the ice density in Dasuopu glacier
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Fig. 2. Bubble volume as a function of depth in Dasuopu ice core (a), densification processes of the firn (b) at different ice core sites.

(Fig. 2b) increases steadily and gradually with depth, which is
similar to polar dry glaciers (Gow, 1968; Clausen et al., 1988) and
unlike the densification curves of Dunde ice cap (Thompson and
Mosley-Thompson, 1990), Chongce ice cap (Han et al, 1989)
and Seward glacier (Sharp, 1951) that represent percolation ice
formation. However, field investigations (Xu and Yao, 1999) also
showed that there were thin ice layers in some parts of the firn,
measuring from 3 to 10 mm. These ice layers represent about
4%—13% of the annual layer thickness, which indicates that the ice
formation is also influenced by limited snow melting at Dasuopu
core site. Therefore, neither the air volume correction systems in
the polar snow zones nor the percolation ice formation zones in the
ER glacier could be used directly for the air volume correction in
Dasuopu ice core. Because the ice formation process at Dasuopu
core site is between the ice formation processes in a polar dry snow
zone and an ER glacier percolation snow zone, the air volume
correction grade for Dasuopu ice core should be between the
grades of those two systems.

Fig. 3a shows the data revision results for air content in Dasuopu
ice core using both the polar (Raynaud et al., 1982) and the ER
glacier correction systems (Hou et al., 2007). There is a relatively
deviation of air content on the upper half part of Dasuopu ice core.
However for the deeper half part of Dasuopu ice core, air content
deviation is very limited. The overall variation trends of air content
in Dasuopu ice core using those two data correction systems have
no obvious difference. Therefore according to the ice formation
process at Dasuopu core site, a middle correction grade between
the polar and ER air volume correction grades was taken in this
work for the air volume correction of Dasuopu ice core. The final air
content results after data correction as a function of depth in
Dasuopu ice core are shown in Fig. 3b.

2.4. Dating

The air content in ice is the volume of the air trapped in each
gram of ice, which represents the physical character (density) of the
ice (Stauffer et al., 1985; Paterson, 1994; Qin and Ren, 2001). When
the air content of the ice is high, it means a low density of the ice,
and vice versa. No matter the year of the trapped gas, the volume of

the gas only relates to the density of the ice in the same stratum. As
the physical character of the ice has no age difference with the ice
itself, the air content in ice should have no age difference with the
surrounding ice. The ages of the ice core are also the ages of the air
content in ice. Therefore, the air contents in the Dasuopu ice core
used in this work were dating by the ice chronology of the Dasuopu
ice Core 2 which had already been established by the pronounced
seasonal signals of multi-parameters, such as the %0, ion
concentration, and ice accumulation model (Thompson et al., 2000;
Yao et al., 2002; Duan et al., 2004). The air content samples which
are selected from the depth of 49—118 m of the ice core cover a time
extent of approximately 400 yrs ranging from AD 1570—1927. The
age error for the ice chronology is about 5 yrs for the past 400 yrs,
less than one year for the past 100 yrs and negligible for the past
40 yrs (Thompson et al., 2000; Yao et al., 2002).
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Fig. 3. Air content records as a function of depth in Dasuopu ice core using the Polar
and ER glacier air volume correction systems (a), and the finally correction result of air
content in Dasuopu ice core (b).
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3. Results and discussion

The air content in ice is dominated by various factors in different
ice formation zones (Kalesnik, 1982; Martinerie et al., 1992;
Paterson, 1994; Qin and Ren, 2001; Raynaud et al., 2007). In polar
dry snow zones, the air content in ice is dominated by the pore
volume and the ice temperature at the close-off depth, the atmo-
sphere pressure (Martinerie et al., 1992) and also the local insola-
tion (Raynaud et al., 2007). In percolation ice formation zones, the
air content of ice is dominated by the magnitude and frequency of
the snow melting (Martinerie et al., 1992; Paterson, 1994; Hou et al.,
2007). However, in the refrozen-recrystallization ice formation
zones, local insolation, atmosphere pressure, ice temperature and
snow melting should all be considered to explain the variation of
the air content in ice (Kalesnik, 1982; Paterson, 1994; Delmotte
et al,, 1999; Raynaud et al., 1997, 2007). In comparison with the
polar ice cap, the area of Dasuopu glacier is very small. Taking into
account the very high altitude of the core site on Dasuopu Glacier,
the elevation variations of the ice sheet surface over the past
millennium were comparatively limited and could be neglected.
Therefore, the atmosphere pressure at Dasuopu core site could be
considered relatively stable over the past millennium and could not
contribute to the variations of the air content in Dasuopu ice core.

Fig. 4 shows the air content measurement results of the
Dasuopu ice core from the depth interval of 49.82 m—52.41 m. This
high resolution sampling analyses showed a significant fluctuation
of the air content in Dasuopu ice core in a very short-term scale. The
air content was compared to the 3'30 of Dasuopu ice core (Fig. 4),
which showed an obvious positive correlation between the air
content of ice and the 8'80 of the Dasuopu ice core. When the 580
value is high, the air content is high. As the Dasuopu Glacier is
located in the region dominated by the South-West Indian
monsoon (Fig. 1), the seasonal variability of the ice core 3'30 is
influenced by the “precipitation amount effect” (Hoffmann and
Heimann, 1997; Araguas-Araguas et al., 1998) which means that
the ice core 3'30 shows a low value in summer and a high value in
winter. Therefore, the air content in Dasuopu ice core had low
values in summer and high values in winter, which might indicate
a negative seasonal variation of the air content with local temper-
ature and/or insolation.

Long-term scale air content in Dasuopu ice core is shown in
Fig. 5, in which the air content in Dasuopu ice core fluctuated
around the mean value of 5.025 cm? per 100 g ice over about
400 yrs from AD 1571 to AD 1927. The §'80 of Dasuopu ice core, the
temperature reconstruction in Southern Tibetan Plateau (Yang
et al,, 2003) and the global solar irradiation reconstruction (Lean,
2004) from AD 1570—1930 are also shown in Fig. 5, which
provides the basis for the discussion of the correlation of air content
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Fig. 4. Comparisons of air content with the seasonal variations of the 3'80 of Dasuopu
ice core.
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Fig. 5. Air content records in Dasuopu ice core (gray spots with blue line as the B-
Spline results) compared to the 5'80 of Dasuopu ice core (Yao and Thompson, 1996,
purple vertical line), the temperature reconstruction in Southern Tibetan Plateau (TP)
(Yang et al., 2003, pink line) and the global solar irradiation reconstruction (Lean, 2004,
red line).

in Dasuopu ice core with other climatic and environmental proxies.
The long-term scale 8'80 value of the Dasuopu ice core is used in
this study to represent the past local annual temperature variations
at Dasuopu Glacier (Thompson et al., 2000; Yao et al., 2002).
Comparisons of these four parameters showed that the annual
temperature at the Dasuopu Glacier, the temperature in Southern
Tibetan Plateau and the solar irradiation all presented general
increasing trends from AD 1570 to AD 1930, which were negatively
consistent with the general variation trend of the air content in
Dasuopu ice core over the same period.

During periods of AD 1570—1620 and AD 1720—1790, two low
value stages were present in the air content in Dasuopu ice core,
which were consistent with the variations of solar irradiation
during the same two periods. However, the relatively stable annual
temperature during AD 1570—1620 and the decreasing trend of the
annual temperature during AD 1720—1790 that indicated by the
3180 of Dasuopu ice core did not correlate with these two param-
eters. Although the high value stage of the temperature in Southern
Tibetan Plateau during AD 1720—1790 could correlate with the
variations of the solar irradiation and the air content in ice, the low
value stage of the regional temperature during AD 1570—1620 did
not correspond with the variations of these two parameters. During
AD 1620—1720 and AD 1790—1840, there were two increasing
stages of the air content in Dasuopu ice core which were consistent
with the decreasing trends of solar irradiation variation during the
same two periods. The annual temperature at Dasuopu Glacier also
presented a consistent low stage during AD 1620—1720, whereas
the relatively increasing trend of the local annual temperature from
AD 1790—1840 did not correlate with the other two parameters.
The variations of the temperature in the Southern Tibetan Plateau
were relatively related to the variations of the air content in ice
during these two periods, whereas the variation amplitudes and
phases of the temperature were not consistent with the variations
of the air content in ice. From AD 1850 to AD 1890, the air content in
Dasuopu ice core showed a gradually increasing trend which was
consistent with the decreasing trend of the solar irradiation, but did
not correlate with variations of the local and regional temperature.
A significant decreasing trend of the air content in ice occurred
around AD 1890, which might relate with the increasing trends of
the local annual temperature and solar irradiation and was not
consistent with the variations of the regional temperature in the
Southern Tibetan Plateau during the same period.
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The statistical analysis of the air content in Dasuopu ice core
with the solar irradiation, local and regional temperature showed
that the correlation coefficient (R) of the air content with the solar
irradiation was 0.595, while both the correlation coefficients (R) of
the air content with the local and regional temperature were less
than 0.1.

Variations of the air content in Dasuopu ice core from AD 1571 to
AD 1927 indicated the variations of physical character (crystal form,
grain size and the density etc.) of ice in the refrozen-recrystalliza-
tion ice formation zone. Combined with the negatively relationship
of the air content with the solar irradiation, the variation of the
irradiation strength on the glacier surface might influence the
crystal from and the grain size of the firn particles and caused
the variations of the pore volume in the firn during the firn—ice
transition process in the refrozen-recrystallization ice formation
zone in the Dasuopu Glacier, which is similar with the conclusion of
Raynaud et al. (2007) on the air content record in Antarctic ice.

4. Conclusion

The air content in Dasuopu ice core had been measured with
a relatively high precession both in the LICCRE and LGGE. Recon-
structions of this ice core air content record showed that the air
content was low in summer and high in winter. The air content
fluctuated around the mean value of 5.081 cm? per 100 g ice from
AD 1571 to AD 1890, and has a pronounced decreasing trend since
AD 1890. Based on the comparisons of the seasonal and long-term
variations of the air content in Dasuopu ice core to the 5'80 of
Dasuopu ice core, regional temperature in the Southern Tibetan
Plateau and the global solar insolation reconstruction, the ice core
air content was negatively correlated with solar insolation over
about 400 years from AD 1571 to AD 1927. Although general
negative correlations were indicated between the local and
regional temperature with the air content in Dasuopu ice core, the
detailed variation trends of these two parameters were not
consistent with the variation trend of the air content. The analyses
indicate that the variations of the air content in Dasuopu ice core
was mainly dominated by the irradiation strength rather than other
climatic and environmental factors. Therefore, the air content in
Dasuopu ice core which was recovered from the refrozen-recrys-
tallization ice formation zone could be used as a proxy to recon-
struct the past solar irradiation changes and also the paleoclimate
evolution history.
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